Do not round K # Only round final answer. Show calculator work wil class - should get some #5 APPLICATIONS OF LOGARITHMS

Dull up TI-84 on Computer

I. Compound Interest

The amount A that principal P will be worth after t years at interest rate r, compounded annually, is given by the formula: A=P(Hr) =

State formula: Example: Suppose \$4000 principal is invested at 6% interest and yields \$5353. For A=p(ltr)t how many years was it invested? t = log (1.33825) log (1.06)

State your values: Azp(l+r)t A =5353 5353 = 4000 (1+.06) t P = 4000 1.33825 = 1.06 t r = .06

= 5,000 313197 log (1.33825) = t log 1.06 25yrs.

II. **Population Growth**

t = ?

One mathematical formula for describing population growth is the formula: P=Pekt P=pop. after time t has passed

rinitical

Students: You muse get same numbers as me. where P_0 is the number of people at time 0, P is the number of people at time t, and **k** is a positive constant depending on the situation.

P = 225Example: The population of the United States in 1970 was 208 million. In 1980 it was 225 million. Use the data to find the value of k and then use the model to P = 208

predict the population in 2000. > ln(225) = ln e 10K P=Poekt $ln\left(\frac{225}{208}\right) = 10K \leftarrow skip$ 225 = 208 e K(10) t=10 $K = \ln\left(\frac{225}{208}\right)$ = 10 $= \frac{10}{10}$ $= \frac{10}{10}$ use calc:

225 = CIOK P=Poext freed any

-= 208 e (00785...)(30)

= 263. 2818278 (already in) × 30 (alkeletes)

(263. 28 mill e Mans) do not round

II. Population Growth

One mathematical formula for describing population growth is the formula:

where P_0 is the number of people at time 0, P is the number of people at time t, and k is a positive constant depending on the situation.

Example: The population of the United States in 1970 was 208 million. In 1980 it was 225 million. Use the data to find the value of k and then use the model to predict the population in 2000.

Values: State Formula:
$$P = P_0 e^{Kt}$$

 $P = 225$
 $P_0 = 208$
 P_0

Keep in calculator

\$263.2818278 # round only FINAL answer.

=> 2 263 million people (nearest # people)

III. Radioactive Decay

In a radioactive element, some of the atoms are always transforming themselves into other elements. Thus the amount of a radioactive substance decreases. This is called radioactive decay. A model for radioactive decay is as follows:

where N_0 is the amount of a radioactive substance at time 0, N is the amount at time t, and k is a positive constant depending on the rate that a particular element decays.

Example: Strontium-90, a radioactive substance, has a half-life of 25 years. This means that half of a sample of the substance will remain as the original element in 25 years. Find k in the formula and then use the formula to find how much of a 36 gram sample will remain after 100 years.

Values:
$$N = N_0 e^{-Kt}$$

Values: $\frac{1}{2}N_0 = N_0 e^{-K25}$
 $N = \frac{1}{2}$
 $\frac{1}{2}N_0 = e^{-K25}$
 $N_0 = 1$
 $N_0 $N_0 = 1$

Notes to go with Appins of Logs

Lesson 10

Announce quiz!

4 main formulas A=p(I+r) t P= Poekt

N=Noe-kt

 $V_n = P(1+r)^n$, r = + appreciation

(MS#1)

- Find its half-life. (Reverse the sleps in notes)

Slept N=Noe-Kt 4,3=34580 e-K(18)

N =4.3

No=34,580 4.3 = C-1815

t=18 ln(--)=lne-181e

ln (--)=-18K

 $K = ln(\frac{4.3}{34580})$

K=0.499...

N=Noe-Kt

7 = No = No et . 499...) t

== e (-.499...)t

ln(.5)= lne(-.499...)t

 $l_n(.5) = -0.499...t$

 $t = \frac{\ln(.5)}{-.499...} = 1.387463571$

$$V_{n} = 50,000 (1 \pm r)^{n}$$

$$25,000 = 50,000 (1 - .10)^{n}$$

$$0.5 = 0.9^{n}$$

$$log(.5) = n log(.9)$$

$$n = \frac{log(.5)}{log(.9)}$$

$$n \approx 6.5788$$

N = 6.58 years