

Lesson: Geometric Means
Do Now: Set up a proportion to find the geometric mean , x, for each set of numbers. (Think: geometric mean is the mean in a proportion.)
Example: For the geometric mean of 2 and 9 , use: $\frac{x}{2}=\frac{9}{x}$ or $\chi=\sqrt{2 \cdot 9}$

1. The geometric mean of 4 and 25 is \qquad 10

$$
\begin{array}{ll}
\frac{x}{4}=\frac{25}{x} \quad & x^{2}=100 \\
& x=10
\end{array}
$$

2. The geometric mean of 9 and 20 is \qquad $6 \sqrt{5}$ \leftarrow No decimals!

$$
\frac{9}{x}=\frac{x}{20} \quad x=\sqrt{180} \rightarrow 6 \sqrt{5}
$$

DISCOVERY: Three right triangles on paper
Using the 2 smaller triangles, can you write a proportion to find the length of the altitude?

Using ΔI and the largest triangle, can you write a proportion to find the short leg, "a"?

$$
\operatorname{lG}_{\operatorname{si}}^{>\frac{\alpha}{x}}=\frac{c^{<L G(h y p)}}{a^{R} \operatorname{sm}(h y p)}
$$

Using $\Delta I I$ and the largest triangle, can you write a proportion to find the long leg, " b "?

$$
L G>\frac{b}{\operatorname{sm} \rightarrow Y}=\frac{c \in G(h / p)}{b R \operatorname{sm}(h y)}
$$

THEOREM: If the altitude is drawn to the hypotenuse of a right triangle, then the two triangles formed are similar to the original triangle and to each other.

$$
\text { (summa: all } 3 \text { As ane } \infty \text {) }
$$

TWO COROLLARIES:

1. When the altitude is drawn to the hypotenuse of a right triangle, the length of the altitude is the geometric mean between the segments of the hypotenuse.

2. When the altitude is drawn to the hypotenuse of a right triangle, each leg is the geometric mean between the hypotenuse and the segment of the hypotenuse that is adjacent to that leg.

Example: Find the values of w, x, y, z.

(1) Wi $\frac{6}{W}=\frac{18}{6}$
Z

(2)

$$
\begin{aligned}
& 18=\omega+x \\
& 18=2+x \\
& 16=x
\end{aligned}
$$

$$
z=12 \sqrt{2}
$$

(3)

$$
\begin{aligned}
& y^{2}=32 \\
& y=4 \sqrt{2}
\end{aligned}
$$

