Chapter: Special Right Triangles

Lesson: Geometric Means

a: b= c: d: > 2= 3

Do Now: Set up a proportion to find the geometric mean , x , for each set of numbers. (Think: geometric mean is the *mean* in a proportion.)

Example: For the geometric mean of 2 and 9, use: $\frac{x}{2} = \frac{9}{x}$

$$\frac{\mathcal{X}}{4} = \frac{25}{\%} \qquad \begin{array}{c} \chi^2 = 100 \\ \psi = 10 \end{array} \qquad \begin{array}{c} \text{only} \\ \text{Value} \end{array}$$

2. The geometric mean of 9 and 20 is $6\sqrt{5}$ — No decimals!

$$\frac{9}{x} = \frac{\pi}{20}$$
 $\chi = \sqrt{180} \rightarrow 6\sqrt{5}$

DISCOVERY: Three right triangles on paper

Using the 2 smaller triangles, can you write a proportion to find the length of the altitude?

Using ΔI and the largest triangle, can you write a proportion to find the short leg, "a"?

$$\frac{16}{2} \frac{2}{x} = \frac{c}{a} \frac{c}{c} \frac{c}{sm} \frac{$$

Using ΔII and the largest triangle, can you write a proportion to find the long leg, "b"?

$$\frac{26}{5} \frac{b}{b} \frac{c}{c} \frac{46}{b} \frac{(hyp)}{sm}$$

THEOREM: If the altitude is drawn to the hypotenuse of a right triangle, then the two triangles formed are similar to the original triangle and to each other.

(Summary: all 3 ds are ~)

TWO COROLLARIES:

1. When the altitude is drawn to the hypotenuse of a right triangle, the length of the altitude is the geometric mean between the segments of the hypotenuse.

2. When the altitude is drawn to the hypotenuse of a right triangle, each leg is the geometric mean between the hypotenuse and the segment of the hypotenuse that is adjacent to that leg.

Example: Find the values of w, x, y, z.

$$D \frac{Wi}{W} = \frac{18}{6}$$

$$W=2$$

(2)
$$18 = W + X$$

 $18 = 2 + X$
 $110 = X$

$$\frac{z}{hyp} = \frac{x}{z}$$

(3)
$$\frac{2}{1} = \frac{4}{16}$$

 $\frac{4}{16}$
 $\frac{4}{16}$
 $\frac{4}{16}$