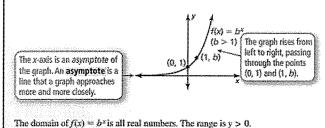
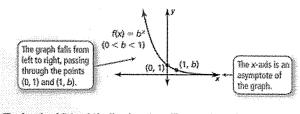
Chapter: Exponential Growth and Dxecay


Exponential Function: $y = ab^x$, where $a \neq 0$ and the base b is a positive real number other than 1.

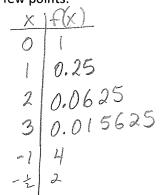
- If a > 0 and b > 1, then $y = ab^x$ is an exponential growth function, and b is called the growth **factor.** The simplest type of exponential growth function has the form $y = b^x$.
- If a > 0 and 0 < b < 1, then $y = ab^x$ is an exponential decay function and b is called the decay factor.

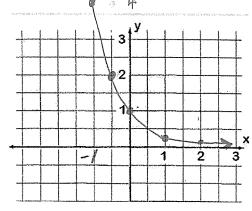
Parent Function for Exponential Growth Functions


The function $f(x) = b^x$, where b > 1, is the parent function for the family of exponential growth functions with base h. The graph shows the general shape of an exponential growth function.

Core Concept

Parent Function for Exponential Decay Functions


The function $f(x) = b^x$, where 0 < b < 1, is the parent function for the family of exponential decay functions with base b. The graph shows the general shape of an exponential decay function.



The domain of $f(x) = b^x$ is all real numbers. The range is y > 0.

Ex 1: Graphing exponential growth and decay functions

Tell whether the function $f(x) = (0.25)^{x}$ represents exponential growth or decay. Then graph the function. Be sure to label a few points.

Section II: Exponential Models

Some real-life quantities increase or decrease by a fixed percent each year (or some other time period). The amount y of such a quantity after t years can be modeled by one of these equations.

Exponential Growth Model

$$y = a(1+r)^t$$

Exponential Decay Model

$$y = a(1-r)^t$$

- a is the initial amount
- r is the percent increase or decrease written as a decimal
- 1+r is the growth factor.
- 1-r is the decay factor.

Again, what makes up the growth factor and the decay factor? growth factor = 1 + % increase decay factor = 1 - % decrease

Practice Exponential Growth and Decay

1. The value of a car y (in thousands of dollars) can be approximated by the model $y = 31(0.92)^t$, where t is the number of years since the car was new. Does the model represent exponential growth or exponential decay? <u>decay</u>

What is the annual percent increase or decrease in the value of the car? 8% decrease When will the car have a value of \$9600? After 14 years (May have to use TABLE) 2. In 2000, the world population was about 1.04 million. During the next 14 years, the world population increased by about 2.05% each year. $Y = \alpha(1+r)^{t}$ Kr= 0.0205 Write an exponential growth model giving the population y (in millions) t years after 2000. Estimate the world population in 2008. Estimate the year when the city's population was 1.3 million. 2011The amount y (in grams) of the radioactive isotope barium-140 remaining after t days is $y=a(0.5)^{\frac{T}{13}}$ where α is the initial amount in grams. What percent of the barjum-140 decays each day? $Y=a(0.5)^{\frac{1}{15}}$ $Y=a(0.948)^{\frac{1}{15}}$ $Y=a(0.948)^{\frac{1}{15}}$ Y=a(0.4. You deposit \$8600 in an account that pays 1.32% annual interest. Find the balance after 4 years when the interest is compounded quarterly. r = 0.0132 $A = P(1 + \frac{r}{n})^{n+1}$ N = 4A= 8600 (1+0.0132) 4.4 7 \$ 9065.49 [The amount y (in grams) of the radioactive isotope iodine-123 remaining after t days is $y = a(0.5)^{13}$ where a is the initial amount in grams. What percent of the iodine-123 decays each hour? 5.19% each hr. 6. You deposit \$9000 in an account that pays 1.46% annual interest. Find the balance after 3 years when the interest is compounded daily. Tr=0.0146 n=365

$$A = P(1+\frac{1}{100})^{nt}$$

$$= 9000(1+\frac{0.0146}{365})^{365.3} \implies 69402.952 \rightarrow 299402.95$$