Name Notes
Advanced Algebra (H) - Exponential Function

Every two seconds, nine babies are bor and three people die. The net increase of three people each second results in a growth in world population of 10,600 per hour, 254,000 per day, 1.8 million per week, 7.7 million per month, and 93 million per year. It is estimated that by the year 2000 it will be 98 million. Social scientists who study population often use exponential functions to model the growth.

If you assume a constant growth rate, you can see that millions more people will soon be living in India. Enter the data into your calculator table and find an exponential function that models this data.

Year	Population (in Millions)
1991	835
1992	883.6
1993	900.3
1994	917.4
1995	934.8
1996	952.6

FOR T1-85's:
PRESS STAT
GO TO EDIT FR
PRESS ENTER TWICE
INSERT DATA
PRESS EXIT ONCE
GO TO CALL Fl
PRESS ENTER TWICE
GO TO EXPR FY

Remember. To get the equation FOR T1-82's:

To get the graph

1. $y=$ clear
2. VARS $5 \rightarrow E \mathrm{EQ}$
7

STAT \rightarrow CALC
PUSH "O"
FOR EXP REG

TYPE L_{1}, L_{2}, Y_{1} AFTER EXPREG.

Write the equation of the model:

Sketch the graph below and find the approximate population of India in the year 2000.

$$
x=0 \text { is } 1990
$$

$2000 \rightarrow K=10$

Problems:

1. The population (in millions) of the People's Republic of China was as follows:

Year	Population (ln Millions)
1991	1151
1992	1168
1993	1186
1994	1204
1995	1222
1996	1240

Find an equation that models this data:

Use the model population equation from India and determine the year (and population) when the populations of the two countries will be about equal.

$$
\begin{aligned}
& \text { Ye two countries will be about equal. } y=1870.99 \text { million pequle } \\
& \text { Year } 2023^{\prime} \quad x=1
\end{aligned}
$$ lack Fum made a shrewd trade of an

undernourished bovine for a star in a dew experimental crop, leguman magicous. With the help of his mother he planted the bean just outside his kitchen window. It immediately sprouted 2.56 cm above the ground. Contrary to popular legend, it did not reach its full height in one night. Being a student of mathematics and the sciences, Jack kept a careful log of the growth of the sprout. On the first day at 8:00 am, 24 hours after planting, he found the plant to be 6.4 cm tall. At 8:00 am on the second day, the growing bean sprout was 16.0 cm in height. At 8:00 am on the third day, he recorded 40.0 cm . At the same time on the fourth day, he found it to be $1 \mathrm{~m}(100 \mathrm{~cm})$ tall.

- Time in days Initially After 1 day After 2 days After 3 days After 4 days
Height $\quad 2.56 \mathrm{~cm} \quad 6.4 \mathrm{~cm} \quad 16.0 \mathrm{~cm} \quad 40.0 \mathrm{~cm} \quad 1 \mathrm{~m}$ or 100 cm
a. Find a function that models this growth. If the pattern were to continue, what would be the heights on the fifth and sixth days?

b. Jack's younger brothers She and Fy measured the plant at 8:00 pm on the third day and found it to be 63.25 cm tall. Show how this value can be found mathematically: You may need to experiment with your calculator.
Use $x=3.5$
$k+=63.245$

$$
\frac{4}{24}
$$

c. Find the height that his youngest brother Foe tried to measure at 12:00 noon on the sixth day.

$$
x=6 \frac{6}{6} \quad h=728 \cdot 12
$$

d. Experiment with the equation to find the day and time (to the nearest hour) when the stalk reached its final height of one kilometer (1000 m or $100,000 \mathrm{~cm}$).

$$
h A=100,000
$$

$$
\begin{aligned}
& 1000 \mathrm{~m} \text { or } 100,000 \mathrm{~cm}) \\
& 100,000 \\
& \left(\frac{100,000}{2.56}\right)=2.56\left(2.5^{x}\right) \\
& \log (1)=x \log 2.5
\end{aligned} \quad x, 11.53
$$

$$
\frac{\operatorname{Dag}_{j}>}{\operatorname{Agg}^{2}, S}=X
$$

3. Given that $f(x)$ is an exponential function and the $f(4)=1229$ and $f(5)=3442$, give your best guess for the value of $f(4.5)$. Justify your answer.

$$
\begin{aligned}
& y=19.976\left(2,800^{x}\right) \\
& (x=4.5, y=2056.749)
\end{aligned}
$$

Algebraically:

$$
\begin{array}{r}
1229=a \cdot b^{4} \rightarrow \frac{1229}{b^{4}}=\frac{344}{b^{5}} \\
3442=a \cdot b^{4} \\
\frac{b^{5}}{b^{4}}=\frac{349}{1229} \\
b^{b}=2.801 \\
1229=a(2.801)^{4} \\
a=19.966 \\
y=19.966(2.801)^{x}
\end{array}
$$

